SCHEDULE 2 TO CLAUSE 42.01 ENVIRONMENTAL SIGNIFICANCE OVERLAY

Shown on the planning scheme map as ESO2.

LITTLE STRINGYBARK CREEK CATCHMENT

1.0

Statement of environmental significance

The Little Stringybark Creek is a tributary to the larger Stringybark Creek which flows into the Yarra River. The creek is located 37 kilometres from Melbourne and has an urban catchment of approximately 300 hectares at its headwaters, and a total catchment of approximately 800 hectares at its confluence with the Stringybark Creek. Development in the catchment is a mix of urban and semi-rural. Part of the suburb of Mount Evelyn is located in the upper catchment, while the lower catchment is rural and primarily used for grazing. The lower catchment, in particular, has sections of very good riparian vegetation where the creek flows in a natural curving channel form.

A restoration program for the upper part of the Little Stringybark Creek was initiated in 2008 based on evidence showing that stormwater runoff causes severe ecological degradation in the following ways:

- A far greater volume of run-off is delivered more frequently, causing erosion and channel enlargement and destroying physical habitat.
- Unfiltered runoff is typically of poor quality with high levels of nutrients, sediment and toxicants.
- Hard surfaces prevent infiltration, potentially starving streams of vital dry weather flows (baseflow).

The program is the first ever attempt to restore creek health by treating stormwater across an entire catchment. Protecting the natural flow regime of the Little Stringybark Creek and ensuring good water quality are critical to maintaining the biodiversity and ecological processes of this Creek as well as downstream waterways including Port Phillip Bay. Further development, in particular drainage from impervious surfaces (roofs, roads and paving), is a threat to the health of the Creek.

The ecological protection objectives contained in this schedule have been developed specifically for the Little Stringybark Creek catchment and are designed to mitigate the impact of impervious surfaces created by new buildings and works, that may otherwise undermine the stormwater retention works carried out as part of the restoration program.

2.0

Environmental objective to be achieved

To return the ecological function and health of the Little Stringybark Creek to a level consistent with a natural stream by encouraging stormwater run-off and water quality entering the Little Stringybark Creek from new development to achieve:

- Natural frequency of surface run-off.
- Natural volumes of run-off.
- Natural infiltration rates.
- Natural concentrations of pollutants.

3.0

Permit requirement

A permit is not required to:

- Construct a building or construct or carry out works that create impervious surfaces less than 10 square metres.
- Construct a fence.
- Subdivide land.
- Remove, destroy or lop any vegetation, including dead vegetation.
4.0 Application Requirements

The following application requirements apply to an application for a permit under Clause 42.01, in addition to those specified elsewhere in the Scheme and must accompany an application, as appropriate, to the satisfaction of the responsible authority:

- A site layout plan showing the location, size and stormwater drainage connections of proposed stormwater treatment authority.
- Location of any on-site septic systems in relation to the proposed treatment measures.
- Where relevant, design details, such as cross sections, to assess the technical effectiveness of the proposed stormwater treatment measures.

5.0 Decision guidelines

The following decision guidelines apply to an application for a permit under Clause 42.01, in addition to those specified in Clause 42.01 and elsewhere in the Scheme which must be considered, as appropriate, by the responsible authority.

Before deciding on an application to construct a building or construct or carry out works, the responsible authority will consider, as appropriate whether it can be demonstrated that the new development can achieve a minimum Stormwater Retention Score (SRS) of 6. This score indicates that 60% of stormwater run-off can be effectively mitigated through water sensitive urban design as outlined in Table 1. A number of factors were considered in setting this minimum standard, including protection of stream health, available technology, site constraints, cost and potential economic impact on applicants.

Standard stormwater systems (e.g. rainwater tank, raingarden) deemed to satisfy a Stormwater Retention Score of 6 are shown in Table 1 below.

In the event that an application does not achieve a minimum SRS score of 6, the responsible authority may consider the following matters:

- Any comments from the relevant waterway management authority.
- The extent to which the development meets the objectives and requirements of this policy.
- The water sensitive urban design response.
- Opportunities for water conservation and reuse that influence the use of water sensitive urban design.
- Whether the development incorporates works to improve the quality and quantity of stormwater exiting the site.
- Whether the proposal will significantly add to the stormwater discharge or adversely affect water quality entering the catchment.
- The level of ongoing management required to achieve and maintain stormwater quality measures that will be used during the construction phase to prevent a loss of stormwater quality.
- The requirements and provisions of any relevant catchment management plan.
- The capability of the land to absorb and retain runoff.
- The significance of any remnant vegetation which may be affected in meeting the objectives of this schedule.

Table 1. Standard Treatment Systems - Deemed to Satisfy

This table presents five treatment options that are deemed to satisfy the ESO requirements*, and shows treatment size requirements based on the amount of impervious area created.
For example, if a development creates 75m² of impervious area, Option 1 is to install a 3kL tank connected to toilet together with a raingarden that needs to have a surface area of 2m² (as shown in the second row for 51-100m² increase in impervious area), if a raingarden only option is preferred (Option 5), the raingarden will need to be 4m².

<table>
<thead>
<tr>
<th>Net increase in impervious area (m²) from building and works proposed:</th>
<th>Option 1: 3kL tank connected to toilet AND raingarden treating tank overflow that has a surface area (m²) of:</th>
<th>Option 2: 3kL tank connected to toilet AND infiltration trench treating tank overflow that has a 0.45m width and a length (m) of:</th>
<th>Option 3: 3kL tank connected to toilet & laundry AND raingarden treating tank overflow that has a surface area (m²) of:</th>
<th>Option 4: 3kL tank connected to toilet & laundry AND infiltration trench treating tank overflow that has a 0.45m width and a length (m) of:</th>
<th>Option 5: Raingarden that has a surface area (m²) of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 50</td>
<td>1</td>
<td>2</td>
<td>No raingarden required. Tank is required</td>
<td>No infiltration trench required. Tank is required</td>
<td>2</td>
</tr>
<tr>
<td>51 - 100</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>101 - 150</td>
<td>3</td>
<td>15</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>151 - 200</td>
<td>4</td>
<td>20</td>
<td>2</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>201 - 250</td>
<td>6</td>
<td>29</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>251 - 300</td>
<td>8</td>
<td>38</td>
<td>4</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>301 - 350</td>
<td>10</td>
<td>48</td>
<td>5</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>351 - 400</td>
<td>12</td>
<td>58</td>
<td>6</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>401 - 450</td>
<td>14</td>
<td>66</td>
<td>8</td>
<td>42</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: *All tank options (1-4) require any first flush diverter installed to discharge to land/garden or raingarden (i.e. not to be connected to the drainage system).